Voter ID Laws: The Disenfranchisement of Minority Voters?

BEN PRYOR
REBEKAH HERRICK
JAMES A. DAVIS

AMERICANS THINK OF THEIR NATION as an exemplary democracy despite its long history of disenfranchising racial and ethnic minorities. It was not until 1870 that the Fifteenth Amendment gave former male slaves and their male descendants the right to vote. It took another 50 years until women became enfranchised by the Nineteenth Amendment. Still, many citizens had to deal with systematic disenfranchisement caused by regressive state laws such as poll taxes and literacy tests—some of which remained in effect as late as the 1960s. It was not until the 1965 Voting Rights Act was amended in 1975 that citizens were guaranteed voting information or even ballots in a language they could understand. In light of this history, any reform that could put an extra burden on minority voters needs to be carefully examined. For this reason, this article examines the effects of strict voter identification (ID) laws on minority voters.
Researchers have looked for definitive evidence of what effects, if any, voter ID laws have on minority voting rates, but definitive evidence has proved hard to come by. Some authors have found evidence that voter ID laws depress voting rates for racial and ethnic minority groups. Others have found little or no such evidence. However, in a 2017 article, political scientists Zoltan Hajnal, Nazita Lajevardi, and Lindsay Nielson seemed to account for the admixture of findings by arguing that the effects of voter ID laws became easier to find as more and stricter laws were enacted by the states. Using Hajnal, Lajevardi, and Nielson’s figures, there were 10 states with strict ID laws in 2014 compared with just one in 2006 and four in 2008. In states with strict ID laws, voters must provide the required ID at the time of voting in order to cast a traditional ballot. Voters who are unable to provide an acceptable ID at that time can be issued a provisional ballot. In order for that ballot to be counted, the voter is required to return to the election office with a proper ID or file an indigenous or religious exemption within a specified time period (generally a few days). Under

less strict types of ID laws, voters can offer an alternative form of identification, such as signing an affidavit as to their identity.

Using Cooperative Congressional Election Study (CCES) data from 2006 through 2014, Hajnal, Lajevardi, and Nielson offered evidence to support their claim that strict ID laws have a suppressing effect on minority turnout without impacting white voters. Although the CCES is a relatively new source of data that originated in 2006, it has the unique advantage of voter validation. That is, whether a voter actually voted is verified with official records. Since CCES data are based on an internet opt-in panel study, it is important to replicate Hajnal, Lajevardi, and Nielson’s study with a more traditional source of voting data, the Current Population Survey (CPS) Voting and Registration Supplement.

The CCES uses an opt-in panel sample that relies on internet surveys, which could bias the results. Voters who are not comfortable using computers or the internet are likely to be underrepresented in the sample and may not be typical of the electorate.\(^7\) Adult internet use in the United States has gone from percentages in the mid-60s in 2006—the first year of Hajnal, Lajevardi, and Nielson’s study—to percentages in the mid-80s in 2014, the last year of their study.\(^9\) Similarly, the demographics of internet users vary by age, race, income, education, and type of community. People who are older, have lower levels of education,\(^10\) and live in lower-income housing in rural areas or small towns are less likely to use the internet.\(^11\) Moreover, Hispanic Americans and African Americans are somewhat less likely than whites or English-speaking Asian Americans to use the internet.\(^12\) There may also be a different set of biases if internet users are so assailed by emailed invitations to participate in survey research.

\(^12\)Perrin and Duggan, “Americans’ Internet Access: 2000–2015.”
that they delete the appeal with little notice of it.13 While weighting adjustments can correct the online sample in terms of its proportionality on key demographic traits, it does not correct the sample in terms of representing people who do not use computers.14 In short, the substantive views or behaviors of self-selected online respondents may not reflect those of the electorate.15

While the CCES uses an internet opt-in panel study to collect data, the CPS uses a representative sample to phone and interview respondents in person. The primary advantage of the CPS data over the CCES data is that the CPS uses a probability sample, so every American has a known and equal chance of being selected.16 Probability samples are required for tests based on statistical inferences and are thought to produce the most representative samples of target populations.17 The result is a sample that is representative of the target population.18 Opt-in panels often produce what may be considered only an approximation of representative samples because of their exclusive reliance on self-selected internet survey takers.19 Thus, an additional benefit of this project is that it addresses the question of whether samples based on opt-in panels can result in conclusions similar to those based on probability samples.

Not only can sampling differences bias survey results, but so can the survey mode; the CPS surveys involve an interviewer, while the CCES are

self-administered computer surveys. A respondent in an internet survey can participate at his or her own convenience since there is no interviewer involved and thus no need to integrate schedules. The absence of an interviewer may result in more valid responses in some situations since an interviewer’s presence may encourage a respondent to provide more socially desirable answers. However, other researchers have found that interviewers may improve the quality of data by clarifying the meaning of questions, by probing for additional insights, or by discouraging deception of various sorts.

It is worth mentioning we are not making the argument that the CPS data are superior to the CCES data, only that they have different biases. The counterbalancing effects of different survey and sampling methods mean that we can have greater confidence in the findings if this study comes to the same conclusions that Hajnal, Lajevardi, and Nielson do. Researchers may be more confident in their results when using samples that differ systematically from populations (for example, electorates) in demographic, attitudinal, and behavioral terms. Jeffrey A. Karp and Maaria Lühiiste, for instance, found that opt-in internet panelists, who were responding to a survey on political engagement, were more likely to be interested in the subject and more likely to be politically engaged.

VOTER ID LAWS AND THE DISENFRANCHISEMENT OF VOTERS

Voter ID laws are expected to depress voter turnout because the “costs” of voting increase when an individual has to possess, remember, and produce an acceptable form of ID when voting. It is widely recognized that Americans get few benefits from voting, so anything that increases the costs of voting will depress turnout. For individuals without the required voter ID, the increased costs are clear. They need to expend time and energy

20Wright, “Researching Internet-Based Populations.”
21Fricker and Schonlau, “Advantages and Disadvantages of Internet Research Surveys.”
23Craig M. Burnett, “Exploring the Differences in Participants’ Factual Knowledge between Online and In-Person Survey Modes,” Research and Politics 3 (June 2016): 1–7.
to get the needed ID verification, such as a passport or birth certificate. Even voters with acceptable types of ID may have their costs increased if they forget their ID when they go to the polls or if their ID is expired. If voters forget their proper ID, they either have to return to the polls and vote at a later time or cast a provisional ballot and take ancillary measures after Election Day. In either event, the laws increase the costs of voting.

One problem with new voter ID laws is that they can be confusing for voters and depress voter turnout. A study of 400 registered voters who did not vote in the 2014 general election in Texas’s 23rd Congressional District found that many voters were confused by the new voter ID law, and this prevented them from voting. For example, many nonvoters who said they lacked acceptable ID actually had acceptable ID. Similar results were found in a study of the 2016 election in Texas’s Harris County and, again, in that state’s 23rd Congressional District.

Racial and ethnic minorities are disproportionately likely to feel the added costs of voting imposed by voter ID laws since minorities are less likely to have the records needed to verify their identity. Matt Barreto, Stephen Nuno, and Gabriel Sanchez used exit poll data to estimate the differences among whites, African Americans, Asian Americans, and Hispanic Americans in the likelihood of their having government-approved identification (for example, a driver’s license, an original birth certificate, a bank statement, a U.S. passport, a utility bill, or a property tax statement). They found that African Americans, Asian Americans, and Hispanic Americans were significantly less likely to have these types of verification compared with whites. In addition, a 2013 national study found that just 63 percent of African Americans and 73 percent of Hispanic Americans had valid driver’s licenses (the most common form

28Wendy Underhill, “Voter Identification Requirements/Voter ID Laws.”
29Wendy Underhill, “Voter Identification Requirements/Voter ID Laws.”
30Hobby et al., “The Texas Voter ID Law and the 2014 Election.”
31Hobby et al., “The Texas Voter ID Law and the 2014 Election.”
34Barreto, Nuno, and Sanchez, "The Disproportionate Impact of Voter-ID Requirements."
of photo ID) compared with 84 percent of whites. Since minorities are less likely to possess IDs, they are more likely to incur extra costs in time and effort proving their identity, and therefore they are more likely to be precluded from voting. Moreover, minorities are more likely to be poor, and poor Americans are more likely to be disenfranchised by these laws.

Research has also found that voter ID laws are not always fairly administered—which also increases the costs for minorities. A study of the 2006 and 2008 elections found that African Americans and Hispanic Americans were more likely to be asked for ID. Moreover, 2008 exit polling data from Boston demonstrated that African Americans and Hispanic Americans—as well as non–English speakers—were significantly more likely to be asked for their ID. These differences could not be explained by variation in the rates at which different minority groups are required to show ID. In addition, prior to the 2012 election, it was found that local election administrators were more likely to answer emails regarding voter ID laws if they came from people without Hispanic surnames. Even in states with no ID requirements, a study found that almost two-thirds of African Americans between the ages of 18 and 29 were asked for ID upon voting. In short, research has consistently indicated that poll workers unfairly ask minority members for their ID.

Furthermore, the research as to where and why voter ID laws were enacted suggests that voter ID laws were designed to restrict minority turnout. Most voter ID laws were passed in the early 2000s for the

40White, Nathan, and Faller, “What Do I Need to Vote?”
expressed purpose of curbing election fraud. However, it is possible that there were also several unexpressed purposes as well. From 2006 to 2011, every law requiring a photo ID or proof of citizenship was passed by a Republican-controlled legislature.42 William D. Hicks and colleagues argued that the Republican Party has an electoral advantage in low-turnout elections since it has more dependable supporters than the Democratic Party.43 In support of that understanding, they found that voter ID bills are more likely to be introduced and enacted in states with more Republican legislators. Evidence of this is strongest in states with competitive political parties and in states where the Republican Party is losing support.44 These states are also those in which Republicans would gain the greatest advantage from voter disenfranchisement. Similarly, Rene R. Rocha and Tetsuya Matsubayashi found that voter ID laws are more likely to be enacted in states with Republican governors and comparatively weak Republican parties supporting them.45 Not surprisingly, David C. Wilson and Paul R. Brewer found that although public support for the enactment of strict voter ID laws is very high, Republican voters are more likely to support such laws than Democratic voters.46 Research also highlights the fact that the framing of the laws by politicians and the media is important. For example, Wilson and Brewer found that as people receive information about possible problems with voter ID laws, support for them goes down.47 They found this to be more pronounced among African Americans, probably because of their historical disenfranchisement.

These studies offer plausible reasons to suspect that voter ID laws might depress turnout, especially among racial and ethnic minorities. But not all scholars agree. For instance, Jason Mycoff, Michael Wagner, and David Wilson argued that voter ID laws are not likely to affect turnout because of the multiple motives involved in voting.48 They contended that people who are interested in politics are more likely to vote and therefore more likely to overcome the burdens of having to furnish an ID. That is, the research

44Hicks et al., “A Principle or a Strategy?”
47Wilson and Brewer, “Do Frames Emphasizing Harm to Age and Racial-Ethnic Groups Reduce Support for Voter ID Laws?”
48Mycoff, Wagner, and Wilson, “The Empirical Effects of Voter-ID Laws.”
suggests that people who are likely to vote will continue to vote regardless of the slight increase in cost.

Voter ID advocates argue that laws are needed to protect the integrity of the electoral process. Many do not see ID laws as a deterrent to voting because a large majority of citizens have the necessary documents to prove their identity. For instance, a 2010 study found that in Indiana, Maryland, and Mississippi, more than 97 percent of surveyed registered voters had proof of citizenship. A recent study of Virginia’s 2014 general election found that only 474 provisional ballots were cast because of a lack of ID. This is compared with the 2.9 million Virginians who voted in the 2014 U.S. Senate race. In addition, it is commonly asserted that voter ID laws reduce voter fraud and increase public confidence in elections, thereby increasing voter turnout. In reality, a person’s belief in the prevalence of voter fraud has neither a direct association with his or her likelihood of voting, nor with the public’s confidence in states with stricter ID laws. However, Shaun Bowler and Todd Donovan found that in states with strict voter ID laws, public confidence in state elections varies by partisanship. Republicans in states with stricter ID laws were more confident in the legitimacy of their elections, whereas Democrats were less confident. Since minorities are highly likely to be Democrats, it follows that their confidence in the voting process would not improve with voter ID laws.

As noted earlier, empirical examinations of the actual effects of voter ID laws on turnout in general, or minority turnout in particular, have produced mixed results. Timothy Vercellotti and David Anderson examined the effects of different types of voter ID laws during the 2004 election, using both aggregate data at the state and county levels and

55 Bowler and Donovan, “A Partisan Model of Electoral Reform.”
individual-level data from the CPS. They found that voter ID laws not only depressed voter turnout generally but also had a greater effect on minority voting. Vercellotti and Anderson estimated “the probability that Hispanic Americans would vote in states that required non-photo identify verification was about 10 percentage points lower than it was in states where Hispanic voters needed only to volunteer their names. The difference was about 6 percent for African Americans and Asian Americans, and about 2 percent for white voters.”

R. Michael Alvarez, Delia Bailey, and Jonathan N. Katz produced somewhat different findings. Using aggregate and individual-level data as well as multyear and multilevel analysis to analyze the effects of voter ID laws from 2000 through 2006, they found little evidence that voter ID laws depressed turnout in the aggregate, although there was evidence that they did so at the individual level. The authors also found that minority turnout did not decrease more than white turnout, although turnout was lower among people with low levels of education and income. Examining voting as reported in the CPS from 1980 through 2010, Rocha and Matsubayashi also found that minorities were not especially disenfranchised by ID laws. Similarly, Mycoff, Wagner, and Wilson found little evidence that voter turnout declined after voter ID laws were enacted. Jack Citrin, Donald P. Green, and Morris Levy also found no proof that informing low-propensity voters of new voter ID laws actually discouraged them from voting.

While the aforementioned studies analyzed survey data, M.V. Hood and Charles S. Bullock relied on actual voting documents instead of surveys. They examined voter turnout in Georgia before and after the photo ID law was implemented. Comparing turnout in 2004 with 2008, they found that voter turnout declined about four-tenths of a percentage point after the ID law was enacted. They also found that although Asian Americans, Hispanic Americans, and African Americans were less likely to vote after the enactment of voter ID laws, the decline was actually less among these minorities than among whites.

56Vercellotti and Anderson, “Protecting the Franchise, or Restricting It?”
57Vercellotti and Anderson, “Protecting the Franchise, or Restricting It?,” 13.
60Mycoff, Wagner, and Wilson, “The Empirical Effects of Voter-ID Laws: Present or Absent?”
62Hood and Bullock, “Much Ado about Nothing?”
Moving to the focus of this study, according to Hajnal, Lajevardi, and Nielson, the mixed findings in the voter ID literature are caused by much of the research being conducted when there were just a few states with voter ID laws, and these laws were fairly weak. Consequently, Hajnal, Lajevardi, and Nielson focus their study on the impact of the strictest voter ID laws in 2006 through 2014, using data from the CCES. They found that minorities are disproportionately disenfranchised by strict ID laws. Their findings led them to raise concerns about these laws, arguing that they can bias democracy in favor of whites and the political right. Given the mixed findings in the literature, and potential biases in the CCES data, we try to confirm Hajnal, Lajevardi, and Nielson’s findings by replicating their model using CPS data.

RESEARCH DESIGN
To replicate Hajnal, Lajevardi, and Nielson’s findings, we compare the results of the CPS Voting and Registration Supplement data to those of Hajnal, Lajevardi, and Nielson’s CCES data. The CPS data are particularly useful because of the large size of the samples involved and the diversity of demographic variables included. Since the CPS has approximately 110,000 respondents (about 70,000 of whom are registered voters), there are sufficient numbers of minority respondents to analyze in states with different types of laws. In addition, the CPS includes questions about voting behavior that can be used as the dependent variable. For instance, about two weeks after the general election, the CPS asks respondents if they voted. The format of the question is, “In any election, some people are not able to vote because they are sick or busy or have some other reason, and others do not want to vote. Did you vote in the election held on Tuesday, November X, XXXX?”

Researchers have relied on the CPS data set to gauge voter turnout for decades, in part because it offers the largest samples of American voters and nonvoters. In addition, the CPS data are considered the “gold standard” for voter turnout surveys. In fact, six previous studies have

64Hajnal, Lajevardi, and Nielson, “Voter Identification Laws and the Suppression of Minority Votes.”
tested CPS data to establish whether voter ID laws have a significant negative effect on minority voting. Three of the studies found a negative effect, and three found no effect.

However, the CPS data are not without their critics. With self-reported surveys of this kind, respondents tend to overreport their voting. The overreport bias in the data arises from social desirability pressure to report voting. This results in the overall percentage of people who say they vote being larger than the percent of people who actually vote. While individuals vote anonymously, official records keep track of whether someone voted. These records show that at the individual as well as collective levels, people self-report voting at higher rates than they actually vote.

Another criticism of the CPS data is due to the nonresponse bias that is unique to U.S. Census Bureau methodology. The Census Bureau takes an unorthodox approach by coding respondents who answer “don’t know” or “refused” or give “no response” to the question of whether they voted. The CPS recodes these responses as though they were answers of “no” to the question of whether the respondent voted. The supposition in such recoding is that it adjusts for the overreporting of voting by other respondents. However, recoding responses of “don’t know,” “refused,” or “no response” as didn’t vote responses is concerning because there are a number of reasons why a respondent might give these replies, other than nonvoting. For instance, sometimes the administration of the survey is stopped prior to the voting question even being asked. Perhaps the interview is not going well, or the respondent needs to stop early for any number of reasons. Both situations would generate a “no response” in the data. Transforming responses of “don’t know,” “refused,” or “no response” into didn’t vote can result in an appreciable portion of didn’t vote responses being wrong. In 2012, this manner of recoding accounted

for 12.8 percent of the sample. Unlike the CPS, the CCES does not recode data. Missing data, skipped questions, or questions that were not asked are not recoded.

To help address these issues with CPS data, we weight the data to account for both overreporting and nonresponse biases. This is done using techniques developed by Aram Hur and Christopher Achen and prescribed by Michael McDonald. Hur and Achen adjust for actual turnout rates per state to account for overreporting. Their method also recodes the “vote” variable to adjust for the nonresponse bias. Respondents who reported “don’t know” or “refused” are recoded as didn’t vote. The method also removes the “no response” data from the analyses and reweights the remaining turnout rates to match individual state vote-eligible populations. Hur and Achen’s method of recoding omits respondents if they are unmarried white, non-Hispanic females over age 85 and college graduates. This method of weighting has been applied recently by other social scientists who study voter turnout.

Since we want to replicate Hajnal, Lajevardi, and Nielson’s findings, we are essentially testing whether the CPS and CCES data will produce similar results. Thus, we conduct two analyses, one with the CPS data and one with the CCES data. We use the CCES data that Hajnal, Lajevardi, and Nielson provide online as a supplement to their article and replicate their model as closely as possible, including using validated votes. One limitation of the CPS data is that they are only available for the general election. As a result, we cannot replicate Hajnal, Lajevardi, and Nielson’s findings with regard to the primary elections. We also do not include the 2006 election since there was only one state with a strict ID law in that year and fewer people had internet access. Otherwise, we run fixed effects for year, clustered for state, and only include registered voters in our sample. Logistic regression is used since the dependent variable is dichotomous. We report the coefficient as well as the marginal effects for readers who find them useful.

As with the Hajnal, Lajevardi, and Nielson article, we are interested in the interaction between strict ID laws and race. To do this, we use the same

74 McDonald, “CPS Vote Over-Report and Non-Response Bias Correction.”
75 Hur and Achen, “Coding Voter Turnout Responses in the Current Population Survey.”
coding of states with strict ID laws employed by Hajnal, Lajevardi, and Nielson. Then, we create a series of dummy variables for race and ethnicity. To create the interaction variables, we multiply respondents’ race by whether they voted in a state that has strict ID laws. For example, African American respondents (coded 1) living in a state with strict ID laws (coded 1) score a 1 on the interaction variable for African Americans and strict ID laws ($1 \times 1 = 1$). All other respondents score a zero on the interaction. We created four interaction variables: African American * Strict voter ID laws, Asian American * Strict voter ID laws, Hispanic American * Strict voter ID laws, and Mixed race * Strict voter ID laws. If strict ID laws disproportionately suppress minority voting, the coefficient for the interaction variable should be negative and statistically significant.

Also following Hajnal, Lajevardi, and Nielson’s work, we minimize the possibility of spurious findings by controlling for several state-level traits. These traits include whether the state has early voting, vote by mail, or no-excuse absentee voting; whether there is a presidential, gubernatorial, or Senate election; and the state margin of victory. With each of these variables, the coding is identical to Hajnal, Lajevardi, and Nielson’s work. We also control for whether the respondents are foreign born; their age, level of education, income, gender, and marital status; and whether respondents have children at home, are union members, are unemployed, and own their own home. Again, we include the same variables and code the data as Hajnal, Lajevardi, and Nielson do.

The income variable is measured as total household income and coded as 1–16, ranging from less than $5,000 a year (1) to more than $150,000 per year (16). The education variable is measured as the highest level of schooling completed by an individual and coded as (1) less than a high school diploma; (2) high school graduate, no college; (3) some college, no degree; (4) associate’s degree; or (5) bachelor's degree or higher. Age is measured as the respondent’s age in years, and gender is coded as 1 for male and 0 for female. A foreign-born respondent is coded 1 and 0 otherwise, and a union member is coded 1 and 0 otherwise. If the respondent has children, that is coded 1 and 0 otherwise. If the respondent owns his or her home, that is coded 1 and 0 otherwise. If the respondent is unemployed, that is coded 1 and 0 otherwise, and if married, coded 1 and 0 otherwise. Additionally, we create a variable that indicates whether the strict ID law is less than a year old at time of the election. It is labeled new strict and is the same variable that Hajnal, Lajevardi, and Nielson label first year.

of strict law. It is coded 1 if the law is less than a year old and 0 otherwise. With the CCES data, we use the variables created and used by Hajnal, Lajevardi, and Nielson. These authors also control for religion and first generation status in their article. However, these variables are not available with CPS, so we do not include them in our models. The appendix presents the means and standard errors for the different data sets.

RESULTS
Table 1 reports the relationship between strict ID laws and voter turnout for different minority groups, relying on both Hajnal, Lajevardi, and Nielson’s CCES data (column 1) as well as the CPS data (column 2). As in Hajnal, Lajevardi, and Nielson’s original article, column 1 of Table 1 demonstrates that strict ID laws are significantly associated with lower levels of voting for Hispanic voters, although not for the other minority groups. That is, strict voter ID laws do not appear to disproportionally suppress voter turnout among African Americans, Asian Americans, or people of mixed races. The CPS data also demonstrate that strict voter ID laws are not associated with lower levels of voting for African Americans, Asian Americans, or Hispanic Americans.

In their original article, Hajnal, Lajevardi, and Nielson also tested for the possibility of disproportionate effects of strict ID laws by examining the effects of the strict laws on white voters compared with nonwhite voters. We replicate this model in Table 2. Here, however, the CCES results differ from Hajnal, Lajevardi, and Nielson’s original findings. They found that whites living in states with strict ID laws have higher rates of voter turnout than nonwhites, but here there is no significant difference. To determine what caused the results to differ, we added the variables that we had removed (that is, religion and first generation status). However, adding these variables did not change the results. It was only after we added the cases from the 2006 election that the interaction variable became statistically significant. This leads us to believe the original results reported by Hajnal, Lajevardi, and Nielson were not very robust. An even more intriguing result found in Table 2 is that with the CPS data, the relationship between the interaction variable and strict ID laws is statistically significant but negative. This means that white voters are disproportionally disadvantaged compared with nonwhites. To get some idea of the substantive significance of this difference, we calculate the probability that whites and nonwhites voted depending on the ID laws in their state, assuming that the other variables are at their median. According to the CPS data, whites living in a state with strict ID laws have a .591 probability of voting compared with .622 for whites in a state without strict ID laws.
For nonwhites, the probabilities are .686 and .678, respectively. With the Hajnal, Lajevardi, and Nielson data, the probabilities are .846 and .850 for whites compared with .809 and .829 for nonwhites, respectively. Thus, for all comparisons, except nonwhites with the CPS data, there is lower voter turnout in states with strict ID laws.

One of the contributions of this article is that it offers an approach to compare opt-in internet panel samples with random samples.
Therefore, there is value in comparing the results of the control variables across probability and panel samples. Here there are many similarities. With both data sets, foreign-born Americans and Americans with children are less likely to vote, while older Americans, those with more education and income, and those who are members of unions are more likely to vote. Similarly, those who are married and who own their own homes are also more likely to vote. Moreover, both probability and panel samples produce the findings that voter turnout goes up in presidential and Senate election years (with the CPS data only in Table 2 but not Table 1) and that early voting is not related to higher levels of voting.

TABLE 2

Comparing Hajnal, Lajevardi, and Nielson’s Results with the CPS Data: Whites and Nonwhites

<table>
<thead>
<tr>
<th></th>
<th>Hajnal, Lajevardi, and Nielson Data</th>
<th>Marginal Effects</th>
<th>CPS Data</th>
<th>Marginal Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voter ID law</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strict</td>
<td>-1.130 (.122)</td>
<td>-.023</td>
<td>.033 (.089)</td>
<td>.007</td>
</tr>
<tr>
<td>Strict * White</td>
<td>.101 (.096)</td>
<td>.018</td>
<td>-.163 (.075)*</td>
<td>-.035</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>.159 (.046)**</td>
<td>.028</td>
<td>-.249 (.083)**</td>
<td>-.054</td>
</tr>
<tr>
<td>Foreign born</td>
<td>-.554 (.061)**</td>
<td>-.096</td>
<td>-.483 (.078)**</td>
<td>-.104</td>
</tr>
<tr>
<td>Age</td>
<td>.032 (.001)**</td>
<td>.006</td>
<td>.026 (.001)**</td>
<td>.006</td>
</tr>
<tr>
<td>Education</td>
<td>.181 (.009)**</td>
<td>.030</td>
<td>.282 (.011)**</td>
<td>.061</td>
</tr>
<tr>
<td>Income</td>
<td>.045 (.004)**</td>
<td>.008</td>
<td>.041 (.005)**</td>
<td>.009</td>
</tr>
<tr>
<td>Male</td>
<td>.186 (.023)**</td>
<td>.032</td>
<td>-.022 (.016)</td>
<td>-.005</td>
</tr>
<tr>
<td>Married</td>
<td>.093 (.021)**</td>
<td>.016</td>
<td>.299 (.026)**</td>
<td>.064</td>
</tr>
<tr>
<td>Have children</td>
<td>-.199 (.026)**</td>
<td>-.034</td>
<td>-.191 (.022)**</td>
<td>-.041</td>
</tr>
<tr>
<td>Union member</td>
<td>.223 (.031)**</td>
<td>.039</td>
<td>.195 (.075)*</td>
<td>.042</td>
</tr>
<tr>
<td>Unemployed</td>
<td>-.109 (.052)*</td>
<td>-.019</td>
<td>-.065 (.043)</td>
<td>-.014</td>
</tr>
<tr>
<td>Own home</td>
<td>.377 (.035)**</td>
<td>.065</td>
<td>.408 (.029)**</td>
<td>.088</td>
</tr>
<tr>
<td>State election law</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration deadline</td>
<td>-.005 (.004)</td>
<td>-.001</td>
<td>-.012 (.005)**</td>
<td>-.003</td>
</tr>
<tr>
<td>Early voting</td>
<td>-.011 (.098)</td>
<td>-.002</td>
<td>.038 (.104)</td>
<td>.008</td>
</tr>
<tr>
<td>Vote by mail</td>
<td>.511 (.120)**</td>
<td>.089</td>
<td>.151 (.244)</td>
<td>.032</td>
</tr>
<tr>
<td>No-excuse absentee voting</td>
<td>.308 (.067)**</td>
<td>.053</td>
<td>.103 (.111)</td>
<td>.022</td>
</tr>
<tr>
<td>Electoral competition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presidential election</td>
<td>.949 (.081)**</td>
<td>.165</td>
<td>1.55 (.127)**</td>
<td>.334</td>
</tr>
<tr>
<td>Gubernatorial election year</td>
<td>.316 (.086)**</td>
<td>.055</td>
<td>.107 (.120)</td>
<td>.023</td>
</tr>
<tr>
<td>Senate election year</td>
<td>.126 (.060)*</td>
<td>.022</td>
<td>.132 (.058)*</td>
<td>.028</td>
</tr>
<tr>
<td>State margin of victory</td>
<td>-.036 (.347)</td>
<td>-.006</td>
<td>-.138 (.343)*</td>
<td>-.300</td>
</tr>
<tr>
<td>New strict</td>
<td>.053 (.144)</td>
<td>.009</td>
<td>-.2229 (.095)*</td>
<td>-.049</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.17 (.139)**</td>
<td></td>
<td>-2.45 (.118)**</td>
<td></td>
</tr>
</tbody>
</table>

| **N** | 144,587 | 140,962 |
| **Pseudo R²** | .132 | .149 |

Source: Authors’ analyses of Hajnal, Lajevardi, and Nielson data and CPS data.

Notes: Model includes year fixed effects. Standard errors are in parentheses.

* * * p < .001; ** p < .01; * p < .05.
Although the two data sets produced many similarities in the findings related to the control variables, there were also some interesting dissimilarities. In some situations, the CCES findings appear to support common beliefs about elections. For instance, there is a significant negative relationship between voter turnout and unemployment. There is also a significant and positive relationship between turnout and a gubernatorial election with the CCES data, but not with the CPS data. However, in other cases, the CPS data results are more consistent with common understandings of elections. For example, with the CCES data, we find that males are significantly more likely to vote than females, although with the CPS data, there were no significant gender differences.78 In addition, while voting by mail and no-excuse absentee voting are significantly related to turnout with the CCES data, they are not with the CPS data. Similarly, registration deadlines are significantly related to voter turnout with the CPS data but not with CCES data.79 Also, with the CPS data, turnout is significantly lower in the first year strict laws go into effect, but it is not with the CCES data. Finally, with the CPS data, the state margin of victory is significantly related to turnout, but it is not with the other data.

Why the CPS results are more likely than the CCES data to match previous research in some cases but not others is a difficult question to answer. Since most studies rely on self-reports of voting, it may be that the CPS and most other results are misleading or that such results stem from biases in panel data. For example, women who agree to participate may be unique, particularly since women tend to be less interested in technology than men. Or it may be that individuals who agree to participate in panels are more likely to vote by mail than are those who do not agree to participate in panels. Clearly, further research is needed to help interpret these differences.

\textbf{CONCLUSION}

This effort to replicate Hajnal, Lajevardi, and Nielson’s work is a critical step in the attempt to understand how voter ID laws affect minorities in the United States. Although previous research on the effects of voter ID laws on voter turnout were mixed, Hajnal, Lajevardi and Nielson’s article

seemed to solve the mystery of the mixed findings. It took more states passing strict ID laws for researchers to be able to find clear evidence that voter ID laws disenfranchise minority voters. Given the importance of their findings, we wanted to try to replicate it, a process made possible by the fact that Hajnal, Lajevardi and Nielson made their data readily available online. Replication is a valuable resource to ensure that research findings are reliable and generalizable and is not common enough in political science.

As we have demonstrated, using different data sets and years can alter the conclusions of research. Using the CCES data—the data that Hajnal, Lajevardi and Nielson used—we found that among Hispanic American voters, there was a significant relationship between strict voter ID laws and lower turnout. However, when we analyzed CPS data, the results differed from those of Hajnal, Lajevardi and Nielson, finding that strict voter ID laws did not disproportionally disenfranchise particular minority groups. In addition, when we did not include the 2006 election in the CCES data, the results differed from Hajnal, Lajevardi and Nielson’s with regard to whether nonwhites, as a group, were harmed by strict voter ID laws.

This replication also allowed the examination of whether opt-in internet panel samples offer results that are similar to those of probability samples. Here the results were somewhat mixed. On the one hand, only the opt-in panel demonstrated that strict voter ID laws disproportionately affect Hispanic American voters. In addition, there were a few significant differences between the data sets in the relationships between some of the control variables and voter turnout. The most noteworthy concern gender and voting. The results from the CPS data and those of most other research support the conclusion that gender does not significantly affect voter turnout. However, with the opt-in panel data, men were found to vote more dependably than women. It may be that this apparent gender difference in voting rates are really gender differences in technology usage. Fewer females make use of this technology. As a result, the apparent gender differences are really a reflection of gender biases in the panels. The differences may also result from voter verification. Perhaps one gender is more likely than the other to overreport voting. More research is needed to determine this.

On the other hand, and in other ways, the findings were very similar across the data sets. Neither data set demonstrated that strict ID laws disproportionally disenfranchise African American and Asian Americans. Moreover, these different data sets demonstrated similar associations for most of the control variables. While the results of this research suggest that
opt-in panels often produce results similar to probability samples, more research is needed to better understand what causes the few differences that do occur.

Finally, there are certain limitations of this study that should be noted and may help guide future research. The most notable is the use of a cross-sectional approach to study changes that occur over time. Relatedly, with the cross-sectional approach, there are concerns about leaving out important variables in the model that could result in spurious relationships. Clearly, no two states are identical, but besides having strict ID laws in places, there are countless other phenomena accruing that might affect turnout. Researchers need to determine a better way to eliminate alternative explanations for why state laws might or might not be found to influence voter turnout. In addition, since we did not have data on primary voting, future research should focus on whether strict ID laws are more likely to disenfranchise voters in primary elections. It may be that they have greater effects on primary voters since primaries are low information races, and therefore the perceived benefits of voting in them may be less than in general elections. Ultimately, more research is needed to explore how opt-in panels or voter verification may affect what we know about what affects voting behavior beyond voter ID laws.
APPENDIX

Means and Standard Errors

<table>
<thead>
<tr>
<th></th>
<th>Hajnal, Lajevardi, and Nielson Data</th>
<th>CPS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voter ID law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strict</td>
<td>.179 (.001)</td>
<td>.150 (.001)</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>.108 (.001)</td>
<td>.121 (.001)</td>
</tr>
<tr>
<td>Hispanic American</td>
<td>.057 (.001)</td>
<td>.078 (.001)</td>
</tr>
<tr>
<td>Asian American</td>
<td>.015 (.000)</td>
<td>.027 (.001)</td>
</tr>
<tr>
<td>Mixed race</td>
<td>.017 (.001)</td>
<td>.013 (.000)</td>
</tr>
<tr>
<td>White</td>
<td>.780 (.002)</td>
<td>.753 (.001)</td>
</tr>
<tr>
<td>Age</td>
<td>48.69 (.071)</td>
<td>49.019 (.057)</td>
</tr>
<tr>
<td>Education</td>
<td>3.289 (.006)</td>
<td>2.776 (.006)</td>
</tr>
<tr>
<td>Foreign born</td>
<td>.044 (.001)</td>
<td>.068 (.001)</td>
</tr>
<tr>
<td>Income</td>
<td>7.486 (.016)</td>
<td>9.877 (.015)</td>
</tr>
<tr>
<td>Male</td>
<td>.486 (.002)</td>
<td>.465 (.002)</td>
</tr>
<tr>
<td>Married</td>
<td>.561 (.002)</td>
<td>.575 (.002)</td>
</tr>
<tr>
<td>Have children</td>
<td>.273 (.002)</td>
<td>.274 (.001)</td>
</tr>
<tr>
<td>Union member</td>
<td>.234 (.002)</td>
<td>.016 (.000)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>.069 (.001)</td>
<td>.039 (.001)</td>
</tr>
<tr>
<td>Own home</td>
<td>.543 (.002)</td>
<td>.756 (.001)</td>
</tr>
<tr>
<td>State Election law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration deadline</td>
<td>23.129</td>
<td>23.172</td>
</tr>
<tr>
<td>Early voting</td>
<td>.656 (.002)</td>
<td>.620 (.001)</td>
</tr>
<tr>
<td>Vote by mail</td>
<td>.047 (.001)</td>
<td>.077 (.001)</td>
</tr>
<tr>
<td>No-excuse absentee voting</td>
<td>.561 (.002)</td>
<td>.528 (.002)</td>
</tr>
<tr>
<td>Electoral competition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presidential election</td>
<td>.422 (.002)</td>
<td>.354 (.002)</td>
</tr>
<tr>
<td>Gubernatorial election year</td>
<td>.528 (.002)</td>
<td>.519 (.002)</td>
</tr>
<tr>
<td>Senate election year</td>
<td>.666 (.002)</td>
<td>.586 (.002)</td>
</tr>
<tr>
<td>State margin of victory</td>
<td>.141 (.000)</td>
<td>.127 (.000)</td>
</tr>
<tr>
<td>New strict</td>
<td>.045 (.000)</td>
<td>.081 (.001)</td>
</tr>
<tr>
<td>Voted</td>
<td>.672 (.002)</td>
<td>.657 (.002)</td>
</tr>
</tbody>
</table>

Source: Authors’ analyses of Hajnal, Lajevardi, and Nielson data and the CPS data.

Note: Numbers in parentheses are standard errors. Means are based on weighted data of registered voters.